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The cavitation phenomenon in a superheated liquid following the 
irradiation of the medium by a flux of neutrons is studied from a macro- 
scopic viewpoint. This is, essentially, the bubble chamber problem. The 
interaction between the neutron flux with the material medium is 
modeled here as a sudden deposition of energy along a straight line in 
a medium which may undergo phase transition. Mathematically the 
problem consists of solving the nonlinear fluid dynamic equations 
governing the motion of a viscous, heat-conducting, compressible fluid 
subjected to the singular initial condition of a sudden energy deposition 
along an infinite line. Time evolution of the resulting “thermal spike” 
and cylindrical shock wave produced is followed by numerical 
computations. A scaling transformation is used to resolve the initial 
development of the singularity. The leading term in the solution at the 
initial stage is in agreement with the solution which may be inferred by 
dimensional reasoning and obtained by the similarity method. Subse- 
quent development of the flow field is first followed by the implicit 
donor-cell finite difference method and then by Miller’s moving finite 
element method, to account for the multiple propagating steep 
gradients developed in the course of time. The necessity of using a 
combination of numerical and analytical techniques to solve such a 
complex problem is discussed. Part I of this paper is concerned with the 
development of the flow field leading to the incipient formation of an 
“embryonic” bubble. Part II discusses the growth of this “embryonic” 
bubble leading to cavitation or to its eventual collapse. C 199zAcademic 

Press, Inc. 

1. INTRODUCTION 

Moderately superheated drops of liquid will be vaporized 
when exposed to sufficiently intense neutron radiation. The 
process can be explained from both the microscopic and 
macroscopic viewpoints. 

From a microscopic viewpoint, the radiation-induced 
cavitation process is a neutron-nucleus interaction process. 
This interaction results in the nucleation and growth of an 
“embryonic” bubble in the medium leading to the cavitation 
phenomenon. This process begins with the interaction of a 
neutron with one of the atoms of the superheated liquid. As 
a result, the agitated ion begins to shuttle through the liquid 
and imparts its energy to the molecules in the liquid. Again, 

the highly agitated molecules around the ion track interact 
with their neighboring molecules, imparting to the latter 
some of their energies. Such interaction propagates radially 
outward from the ion path, resulting in the observation of a 
rapidly expanding region of extremely hot fluid. This is the 
thermal spike envisioned by Seitz [ 10, 111. 

From the macroscopic viewpoint, the process may be 
divided into the following stages: (1) The initial stage. 
Energy is deposited locally in a very small region producing 
a localized region of high temperature, referred to above as 
a “thermal spike.” The sudden expansion of this intensely 
thermalized region produces a strong shock wave propa- 
gating outward into the surrounding medium. In the initial 
stage, the temperature T and pressure p of the fluid within 
the shock enclosure far exceed the critical temperature T, 
and the critical pressure p,.. There is no distinction between 
liquid and vapor, and there cannot be any “bubble.” (2) The 
pre-bubble formation stage or “cooling stage.” As the energy 
is transmitted from the thermalized region to the sur- 
rounding medium through shock propagation and heat 
conduction, the temperature and pressure of the fluid within 
the shock enclosure decrease, the expansion process slows 
down and the shock wave decays. (3) The interface forma- 
tion stage. The vapor-liquid interface will be formed at some 
radial distance when T and p reach the critical temperature 
and pressure giving rise to an “embryonic” bubble. (4) The 
post-interface formation stage or developing stage. If the 
energy deposited in the medium is sufficiently high, the 
vapor cavity enclosed with the “embryonic” bubble will 
grow indefinitely; if the energy is not high enough, then the 
growth of the cavity may be impeded by the interfacial and 
viscous forces as well as by conduction heat lost, to such an 
extent that the bubble may in the end collapse and there is 
no cavitation. 

In this paper, the radiation-induced cavitation process 
will be studied from the macroscopic viewpoint. Several 
problems are of special interest such as the threshold energy 
required for “cavitation,” the calculation, and the descrip- 
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tion of the radiation-induced cavitation process and the 
flow fields at different stages. Radiation-induced cavitation 
can be detected by acoustic methods such as superheated 
drop detectors (SDD) invented by Apfel [ 1, 21, but the 
details of the process and the flow fields are difficult to 
measure. The difficulty arises principally from the extremely 
small length and time scales on which these phenomena 
take place in nature (for details and numerical values, see 
Section 6, Part 2). We propose to construct a mathematical 
theory to describe the ongoing complex process and attempt 
to predict the outcome with numerical calculations. Two 
assumptions will be made: (1) The behavior of the medium 
can be described by the usual macroscopic fluid equations. 
It follows that the flow fields can be described by the general 
fluid dynamic equations which form a nonlinear partial dif- 
ferential equation (PDE) system; (2) Energy is deposited 
uniformly along an infinite line. These two assumptions are 
probably acceptable up to the formation of a critical size 
cavity. 

There are some special difficulties in solving this PDE 
system related to the radiation-induced cavitation process: 
(1) Singularity at the initial stage referred to as the “thermal 
spike”; (2) The emergence of a second phase leading to 
rapid changes in the coefftcients of viscosities, thermal 
conductivities, densities, specific heats, etc.; (3) Multiple 
moving steep gradients such as the propagating shock wave 
and vapor-liquid interface. 

A hybrid methodology is designed to overcome the above 
difficulties and to solve the following problems: 

(1) When energy is suddenly deposited at a point, line, 
or plane in a perfect gas, it is well known that the initial 
development of the flow is self-similar [3, 71. This result is 
found to be also true for real fluids which may exhibit phase 
transformation. The scaling transformation is used to over- 
come the singularity difficulty and to establish the initial 
flow field as the initial conditions of the whole process. The 
partial differential equations reduce to an ordinary differen- 
tial equation system (ODE) using the scaling transforma- 
tion normalized by the shock radius R and the shock 
speed d. This ODE system can be solved by the predictor- 
corrector method and the shooting method. The above 
methods can only be used to compute the flow fields for a 
few time steps, since the simple shooting method is an 
unstable method. 

(2) The implicit donor-cell finite difference method 
(FDM) is used to solve the flow field at the pre-bubble for- 
mation stage with the same variables as in the scaling trans- 
formation. The extrapolation using the information of the 
three previous time steps is adopted to calculate the first 
guess of Newton iteration. The flow fields at t = 0, t = At, 
and t = 2 At are supplied by the above scaling transforma- 
tion analysis. As time evolves, density gradients become 
steeper and steeper. Since the implicit donor-cell FDM is 

a fixed grid method, it can no longer be adapted to the 
moving steep gradients when phase change is about to occur 
somewhere. Hence, adaptive computational methods are 
introduced. 

Part I of this paper is concerned with the flow develop- 
ment and physical changes occurring in the initial stage and 
the pre-bubble formation stage mentioned above. 

(3) Miller’s moving finite element method (MFEM) is 
used to solve the flow fields of the interface formation stage 
and the post-interface formation stage with multiple moving 
steep gradients. The flow field solved by the implicit donor- 
cell FDM is used as the initial conditions of the MFEM. It 
is not advisable to connect the MFEM directly with the 
similarity solution for two reasons: (1) The magnitudes of 
the various physical variables change by many orders of 
magnitude between the initial phase of flow development 
and the subsequent stages of bubble growth or collapse. 
(2) The physical scale is extremely small in terms of L, 
the length scale characterizing the phenomena. The same 
problem does not occur with the FDM, because the length 
scale is normalized by the shock radius which is itself very 
small in the initial stage of development and because 
similarity variables instead of the physical variables are used 
in the formulation of FDM. If the MFEM were connected 
directly to the similarity solution, the rapid decrease of 
various physical variables in the initial phase of pre-bubble 
formation stage would require extremely small time steps to 
resolve the changes. Consequently, the inclusion of the 
solution of the implicit donor-cell FDM for intermediate 
times is important. Part II will cover the MFEM and deal 
with bubble formation and its evolution with time. 

2. GOVERNING EQUATIONS 

Under the assumptions made, the fluid motion can be 
described by the usual macroscopic fluid equations. The 
flow field is governed by a system of live equations, namely, 
three conservation equations (mass, momentum, and 
energy conservation), one equation of state, and one specific 
internal energy equation. They are sufficient to solve for the 
five unknowns: temperature T, pressure p, velocity u, 
specific volume v (density p = l/v), and specific internal 
energy e. The medium is modeled by a Horvath-Lin fluid 
CSI. 

In a cylindrical coordinate system, the mass, momentum, 
and energy conservation equations are 

*+~Wu)=o 
at r ar ’ (1) 

(2) 
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and 

P,(~+.$)+,,(~+;) 

4 1 C?(W) [ 1 * 
=p ;r -4/l;:+;; .r$ +pq, 

( 3 
(3) 

where t denotes time and r is the radial distance; p(, K, and 
c, are respectively the viscosity, thermal conductivity, and 
specific heat capacity at constant volume of the fluid, f, is 
body force and P,= (aP/aT),. 

The thermal equation of state will be modeled by the 
Horvath-Lin equation 

R*T a p=-- 
v-b Tu(u+c)’ (4) 

where a, 6, and c are three parameters in Horvath-Lin’s 
equation. R* is the gas constant. 

The specific internal energy equation associated with the 
Horvath-Lin’s equation is 

s T 

e=e,+ 
TO 

c,,Ideal(T) dT+$ln 

where eO, To, and v0 are the undisturbed values of e, T, and 
0, respectively. 

The boundary conditions at r = 0 are 

u = 0, 

dT -= 
dr 0. 

(6) 

(7) 

From the momentum conservation equation (suppose 
f, =O), and II =0 at r = 0, we have the third boundary 
condition at r = 0: 

(8) 

The boundary conditions as r --+ 00 are 

u = 0, 

T= To, 

v=vo. 

(9) 

(10) 

(11) 

The global energy conservation equation is 

271 jrn [p(e + tu’) - Poe,] r dr = i?, (l-2) 
0 

where i? is the energy deposited per unit length. 

3. FLOW FIELD IN THE INITIAL STAGE 

In the initial stage, energy is deposited locally in an 
extremely small region, producing a localized region of high 
temperature. The sudden expansion of this intensely ther- 
malized region produces a strong shock wave, propagating 
outward into the surrounding medium. As expected, the 
shock speed l?, velocity u, pressure p, temperature T, and 
the specific internal energy e approach infinity as the shock 
radius R + 0. The characteristic feature of the solutions in 
this stage is its initial behavior. Obviously, it would be 
impossible to carry out numerical solutions of the boundary 
value problem in terms of the physical variables. A scaling 
transformation is introduced to overcome the singularity 
difficulty. 

The size of the above-mentioned small region which 
expands rapidly with time may be characterized by the 
shock radius R(r). The exact value of R(r) at any instant t 
must, of course, be computed. Assuming this is known for 
the moment, the expansion rate of the highly thermalized 
region may be characterized by the shock speed i(t). It is 
easy to see that d --f cc as R -+ 0, cf. Eq. (13d) below. From 
the shock wave theory, u is of the order of 6; e -e, is of the 
order of &,’ as R + 0; p, of the order of pod*; T, of the order 
of d */R * (R * is the gas constant); p and v are both of order 
unity as R + 0. It is, therefore, imperative to renormalize the 
dependent variables so that they remain bounded within the 
shock enclosure as R + 0 (i.e., immediately following 
the energy deposition). To this end, let us introduce the 
dimensionless variables, 

and 

where 

R*T T=- 
R* ’ 

p&f-, fi=v 
PO vo’ 

r A 
vs = (R*TO)‘/* 

CO Cc=---, 
R* 

x 
j= L(R*TO)‘/*’ 

’ 

i?= 2npoR2d2 ~o’fdi++;U2),/U, 

XL- 
pR*’ 

#o=po 
PoR*To’ 
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Here, L is a characteristic length which is of the order of the 
radius of a column of original fluid of unit length having a 
total energy ,?, and V, is the dimensionless shock speed; C,, 
,i& 1, and &, are respectively the dimensionless specific heat, 
viscosity, thermal diffusivity, and compressibility factor 
(pou,/R*T,,). Finally, X and R are the dimensionless radial 
distance and the shock radius. In the initial stage and the 
pre-bubble formation stage, it is convenient to regard i? as 
a measure of time t elapsed since the energy deposition. 
Since the shock radius R and time t are related by t = 
s,f (dR/R) with the shock speed k as a function of R deter- 
mined as part of the solution, the dimensionless R will be 
related to the dimensionless time idefined as 

t= t (R*ToJ1” 
L 

by the equation 

s "dR f= - 
0 v, 

(*Aa) 

(14b) 

or 

s 

R 
i= r(R)Rdi?, (14c) 

0 

where r, defined by 

1 
r=- 

V,R' 

remains finite as i? -+ 0, cf. Eq. (13d). 
With R and X as the independent variables, instead of t 

and X, and subscripts i? and X as the partial derivatives with 
respect to indicated variables, the governing equations 
(l)-(5) can be rewritten in the dimensionless form 

- - 
Ru, + (U - X) u\- - V( Ur + u/x) = 0, (16) 

Ru,-+(U--)Ui.-----uR(lnr),- 

(17) 

G,+(ii-z)e,-22e(l+i@ln r)R)+pv(ui+ii/x) 

= vr[(fT,),+ (j&)/q +i rqii [ 1 i (ux).~ 
2 

- 4rfip 4f ur, 
.Ic (18) 

and 

d?+?r2x2 ln(l+y,) 

2~ PR4 v 
+$+---ln - 

( > v+y, ’ (20) 

where the new dimensionless parameters a,,, /3,,, and y,, are 
related to the parameters a, b, and c of the Horvath-Lin’s 
equation of state by 

aR* 
ah = u,(R*T,,)” Yh=z. (21) 

Now we shall introduce a number of simplifying assump- 
tions: (1) the fluid medium ahead of the shock front may be 
assumed inviscid and non-conductive; (2) the viscosity and 
conductivity within the shock enclosure are constant. 
Admittedly, the latter assumption is extremely crude, since 
there is a large temperature variation in the flow field, espe- 
cially in the initial stage of flow development. Fortunately, 
as our computation results will indicate, viscosity assumes a 
rather minor role in the initial stage of flow development 
behind the shock enclosure. The same, however, cannot be 
said of heat conductivity. 

The boundary conditions at X= 1 are the conservation 
relationships 

c=*-fi 2 

p=l--a+#or2R2-ijx r-2~~ , 
c- > 

(22) 
X 

while the global energy equation, expressed in terms of the 
new variables, assumes the form 

r2=2 lxdqc+ ii2/2)/V. 
s (23) 

0 

Define 4, B, and I? by 

lj = Ti,x, 

(2 + iP/2) 
u ’ 

IT= iix. 

Regarding R as a parameter, the system of equations can be 
v-fib T6(6+)',) 

r4R4 
' (19) 

cast in a form of an ODE system: 
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I I 
+ v‘4 

C-26) 

dT 4 

z= X’ 

4 -= 
d,f 

-~+~[R[~n] +(ti-2)[2,] 

- 2[F](l + R(,n r),-) + JZ(U, + zi/X)] 

dE 2,f(e + ii2/2) -= 
d? v . 

The boundary conditions at,..? = 1 are 

6=1-V, 

while those at X = 0 are 

u = 0, 

q = 0, 

B= 0, 

Fv: =o,l 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

’ This boundary condition can be derived from the continuity 
equation (1). assuming that p is a differentiable function of the spatial 
coordinates at r = 0 so that (a/ar)(ln p) = 0. Thus, writing Eq. (1) in the 
form u = -r[(a/ar + ~(a/&)) In p + au/&] (Eq. (a)), we conclude that 
~(0, r) = 0 for I > 0, assuming that the derivatives of p and u are bounded. 
Differentiating the above once and letting r -0, one obtains (&/&),=a = 
- i[(a/r?f)(ln p)],=s. Differentiating Eq. (a) a second time and letting 
r + 0, we obtain (d’u/dr*),=, =O. In the normalized system, we have 
kT’, = 0. Note that in the neighborhood of r = 0, the velocity behaves like 
u = (&/ar),=, r + 0(r)) so that (3*n/dr*),=, + 0. As a result, Eq. (8) could 
have been replaced by a simpler boundary condition (dp/dr),=, =O. 

where 

(33) 

(34) 

(35) 

(36) 

(37) 

[CR] = E, ,,,,( TR-2r2S2rrRR2) + : f2R2 ln( 1 + yh) 

- 

(38) 

(39) 

------ - - 
Expanding the variables v, u, p, e, T, q, W, B, and Tin the 

form of an asymptotic power series in R, the first terms of 
these equations, i.e., O,, ii,, PO, SF,,, T,,,, q,, WO, &, and r,, 
satisfy a system of ordinary differential equations whose 
solution depends only on X (=F/‘/8) referred to as “zero- 
order solution.” This solution shows that, in the initial 
stage, we have a self-similar solution. This important result 
which resolves the difficulty associated with the initial 
singularities can indeed be justified by dimensional 
reasonings. E/p0 has the kinematic dimension of [L4/T2] 
which is the square of the kinematic dimensions of viscosity 
p/p0 and thermal diffusivity tc/(p,R*). In the initial stage 
defined by r <<L, the parameter L is irrelevant. Since there 
is no other length or time scale in the initial stage, 
dimensional considerations demand that the shock front 
must grow as (Qlp0)l14 t”’ and the shock speed must vary 
as (Qlp0)1’4 t -‘12. 

The ODE system governing the zero-order solution can 
be deduced from the above differential system by setting 
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R = 0 and assuming the R-derivative terms bounded. It is 
solved by the “prediction-evaluation-correction-evaluation” 
procedure (PECE) [8]. In this paper, we use the fourth- 
order predictor-corrector methods such as the Adams+ 
Bashforth-Moulton pair. In the above calculations the 
values of the variables V, T, and r (also I?,, T,,, and r,) at 
x = 0 are unknown. The shooting methods [ 12, 131 com- 
bined with the PECE method are used to estimate these 
values. Once the zeroth-order solution is obtained, it may 
be continued for R > 0 by approximating the R-derivatives 
in the governing differential system by backward Euler’s 
differences. 

We may compute the flow fields for a few time steps 
starting from t = 0 (R= 0). In reality, however, there are 
difficulties with computational instability of the simple 
shooting methods. First, for the solution y(x, S) of the 
initial-valued problem y’ = F(x, y), y(a; S) = S, one has 

IIy(x; s,) - Ax; s2)/I < llsl -szll eB’rpa’, 

where S, and s2 are two testing values. /I is a parameter 
related to the given problem. Second, the Jacobian 
IID,$(x, y)ll may be unbounded on s= (x, y)la<x<6, 
y E ‘%“. The above two difficulties restrict the value s to a 
small set M which as a rule is not a priori known [12]. In 
our case, we solve for the flow fields at i? = 0, AR, 2 Ai? (e.g., 
Aa = 0.001, the increment of the normalized shock radius 
i?), corresponding to the times t = 0, At, 2 At, but cannot go 
further. The implicit donor-cell finite difference method will 
be used later to solve the flow fields as time evolves. 
Nevertheless, these initial solutions are essential for 
continuing the solution by the finite difference method, since 
R = 0 is a singular point of the governing differential system. 

4. RESULTS FOR THE INITIAL STAGE 

Isobutane C,H ,0 at 20°C and 1 atm is a superheated liq- 
uid. It is used as a testing medium irradiated by neutrons at 
1.55 MeV equivalent to the energy distribution along the 
neutron track E,. = 6.23 18 12 g . cm/s’. Experiments showed 
that this neutron energy is the threshold energy to form 
a bubble developing indefinitely. The initial density of 
isobutane at T = 2O”C, p,, = 0.557069 g/cm3, the gas 
constant R* = 1.987 cal/g.mole K or R* =0.1431 x 

TABLE I 

Data Related to Deposited Energy E 

E 

OSOEC 
0.75& 
1 .OG 

2.oOEc 

dE/dy (g .cm/?) L (cm) x 

3.115906x lo-’ 0.20600 x 10m5 0.38084 
4.673859 x lo-’ 0.25229 x 10 5 0.31096 
6.231812 x 10-j 0.29132 x 10m5 0.26930 

12.46362 x lo-’ 0.41199 x 10-S 0.19043 

TABLE II 

Data Related to Deposited Energy E 

OSOEC 3.84163 x 1O-3 6.53035 x 1O-2 0.0780202 0.38085 
0.75.G 3.13684 x lo-’ 5.33230 x lo-’ 0.0637022 0.31096 
l.OO& 2.71644 x 10-j 4.61765 x 1O-2 0.0551670 0.26930 
2.00& 1.92081 x lo-’ 3.26518 x 10m2 0.0390096 0.19042 

FIG. 1. Normalized flow fields in the initial stage. 

1.0 

0.5 

tsobutane:C4HlO. To=ZOC 

0.0 L I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 2. Normalized density distributions with different input energy 
in the initial stage. 

P=r/R 
0.0 I I 1 I 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 3. Normalized temperature distributions with different input 
energy in the initial stage. 
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0.4 1 / 
i=ll/k 

FIG. 4. Normalized velocity distributions with different input energy 
in the initial stage. 

10’ ergs/g K. The compressibility factor &, = 0.00433494. 
The parameters of the equation of state are c1= 0.4280855, 
a = 0.0848836, y = 1.0746463. The other related parameters 
for different deposited energy i? are listed in Tables I and II 
c91. 

Figure 1 is the flow distribution at the initial stage for 
E= 0.75E,.. Figures 2, 3, and 4 are the density distribution, 
temperature distribution, and velocity distribution for 
different deposited energy E. All the data are normalized 
values. The starting values T,,(O), V,(O), r, are determined 
by the shooting method. The total number of nodes is 200; 
CPU time is about 80 s for each case on the Micro-VAX. 

The above distributions can be roughly divided into two 
regions. For X < 0.7, the variables change substantially, 
while in the outer region the variables change little. 

The effect of viscosity on the solutions at this stage is 
found to be negligible, since the relative difference of the 
solutions between viscous cases and inviscid cases is within 
0.005 % for many examples studied. This result is in 
agreement with that of [7], which examined the effects of 
viscosity on the propagation of blast in an ideal gas. 

5. SOLUTION IN THE PRE-BUBBLE FORMATION STAGE 

The flow field in the initial stage has been computed for 
small values of i? by a scaling transformation. However, the 
method of calculation becomes increasingly inefficient as 
the value of i? increases. Hence, the implicit donor-cell finite 
difference method (FDM) [4,6] is used to continue the 
solution beyond the initial stage. The results show that 
the implicit donor-cell FDM is efficient and accurate for 
the pre-bubble formation stage; however, difficulty arises 
when the density gradients become steep at the place where 
the phase change is about to occur. 

The governing equations, i.e., Eqs. (16k(20) are rewrit- 
ten in conservation form for the application of the implicit 
donor-cell FDM, 

(40) 

where subscripts z and X signify the partial derivatives with 
respect to the indicated variables, and 

> 
+p(*+Y)(ln V,), 

r 

+p(2F+(G+Z) *)[ln F>],-r$ 

= 0, 

where 

and 

z=lnR, R=e’. 

Here, r is the variable corresponding to the time. 
In the above equations, 

s T 
e= T’RZ 

and 

(45) 

The basic unknowns are pi, Ui, and Ti (i = 1, 2, . . . . m) and 
the normalized shock speed I’,, where pi, zii, and Ti denote 
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respectively the non-dimensionalized density, velocity, and 
temperature at the ith spatial node in a finite difference grid 
having a total of m nodes. The specific internal energy t? can 
be described as a function of p,, Ui, and Ti (i = 1, 2, . . . . m), 
using Simpson’s integral algorithm. Equations (40)-(44), 
together with the global energy equation 

form a system of equations whose solution gives the flow 
field in the pre-bubble formation stage. 

The above governing equations can be solved by the 
implicit donor-cell FDM through an iteration process such 
as the well-known Newton iteration method. In the Newton 
iteration method, the main task lies in forming the Jacobian. 
A reasonable error tolerance is given to control the itera- 
tion. Since it is important to have a good first guess in 
solving the nonlinear algebraic system, we propose to 
obtain a reasonable first guess by extrapolating the results 
obtained in the three previous time steps. The usual method 
of using an explicit formulation with time derivatives 
approximated by forward differences breaks down at a = 0 
and yields poor results when R is small. On the other hand, 
if the initial information (the first three time steps) is sup- 
plied by the scaling transformation solutions, the resulting 
iteration is found to be 3 - 4 times faster than using the 
forward Euler’s formula for calculating the first guesses. 

As regards the boundary conditions at X = 1, an 
imaginary point, i.e., the (m + 1)th point, is introduced 
(Fig. 5), where m is the total number of nodes. The flow is 
continued beyond X = 1 as though there were no discon- 
tinuity there and the values of pm+ i, U,, , , and i=,,,+ , at 
the imaginary point are determined by insisting that the 
jump conditions at X = 1 are satisfied (cf. Eqs. (31)). No 
imaginary point is introduced at X = 0. 

It should be noted again that the fluid ahead of the shock 
front is assumed to be inviscid and the imposition of the 
three boundary conditions at the shock X = 1 implies that 
we have purposefully suppressed the possibility of solving 
the structure of the shock layer and the rapid transition 
therein. This should not be taken as meaning the thickness 
of shock wave is negligible compared with all relevant 
length scales in the problem. While it is indeed negligible 
when compared with the shock radius if EB pp2, it is 
nevertheless of the order of the radius of the critical size 
bubble, as one of the reviewers of this paper has noted. We 
believe our model should correctly predict the formation, 

2=0 Z=l 
0  ̂ 2  ̂ 12 3 2  ̂ = e ---e 
1 2 m-1 m mfl 

FIG. 5. The imaginary node WI + 1 at boundary X = 1. 

growth, and/or collapse of the bubble, because the 
dynamics of bubble formation and motion depends on 
the net thermodynamics effects of the shock wave on the 
mediums which have been accounted for by imposing the 
appropriate boundary conditions at the shock and because 
when the bubble is formed, the shock wave is located so far 
away that its structure should have no effect on the growth 
and collapse phenomena that we are interested in. 

6. RESULTS FOR THE PRE-BUBBLE FORMATION STAGE 

Isobutane C,H,, at 20°C and the deposited energy 
,!? = l.OE,. is taken as an example. The related data are 
shown in Tables I and II. The total number of nodes m is 
200. 

The dimensionless shock velocity I’, ( = @(R*TJ”*) as a 
function of i? can be computed immediately from Eq. (15), 
since r at each R has been determined in the computation. 
This is shown in Fig. 6. 

The dimensionless shock radius i? ( = R/L) as a function 
of the dimensionless time i ( = t(R*To)“‘/L) can be 
calculated from Eq. (14), and this is shown in Fig. 7. Note 
that R is a monotone increasing function of time i in the 
initial stage. Indeed, R has been adopted as the “time 
variable.” 

The evolution of the thermal spike is shown in Fig. 8, 
where T is plotted against X at different values of R. It may 
be recast in a more easily visualized form. In Fig. 9, the 
temperature distribution T(r, t) at different time t is plotted 
as T/T, vs r/L at various i= tug/L, where ug = (R*To)“‘. 

At a given instant R, there is a pressure p as well as a tem- 
perature Tat each point X within the shock enclosure. This 
fact is depicted in Fig. 10, where a plot of p vs Tat different 
values of R’s is given. The location at which the particular 
p and T at the instant R occurs can be indicated on each of 
the pT-curves. Indeed, the broken lines are the lines at con- 
stant X’s Also shown in the figure are the critical pressure 
and temperature. To give a physical interpretation to this 
graph, we observe that as time increases, the pT-curve 

Isobutane: C4HlO. To=ZOC 

F=l.OFc 1 

00 I,, I, I1 I,, , ,Tlo 

0.0 0.5 1.0 1.5 

FIG. 6. r, V, vs ii in the initial and pre-bubble formation stages. 
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FIG. 7. The relation between the normalized shock radius Ii and time i 
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FIG. 8. Temperature distributions normalized by I’= R*T/(d * d) 
andf=r/RasR<1.74. 
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FIG. 9. Temperature distributions normalized by T= T/T, and 
.u=rjL as R< 1.74. 
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FIG. 10. p - T relation in the pre-bubble formation stage. 
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FIG. 11. Density distributions normalized by p = p/p,, and x = r/R as 
RG 1.74. 
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FIG. 12. Density distribution normalized by p = p/p0 and x = r/L as 
R,< 1.74. 
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FIG. 13. Velocity distributions normalized by U = u/l? and X = r/R as 
R< 1.74. 

sweeps from a small value of R (e.g., R=0.49) to larger 
values of the time variable i?. It is clear that nowhere can a 
vapor-liquid interface form in the medium until the 
pT-curve crosses the critical point. 

The evolution of the density field is shown in Figs. 11 and 
12. It shows that there is a gradual steepening of the density 
gradient even prior to the formation of the vapor-liquid 
interface. The velocity distribution is shown in Figs. 13 and 
14. The apparent “infinite” curvature exhibited by the 
velocity profiles at the shock front (where X = 1) is, of 
course, a consequence of our deliberate attempt to avoid 
resolving the extremely thin shock layer. The CPU times to 
calculate the pre-bubble stage are about 30 min on the 
Micro-VAX. 

When phase change is about to occur, the density 
gradient becomes rather steep somewhere. Since the loca- 
tion of such a steep gradient changes with time, it is obvious 
that an adaptive method of solution is required. For this 
reason, the above method of solution, using a fixed grid, is 
not suitable in the post-interface formation stage. 

Isaoutane. CliflO, To=ZOC. E=l Oh i 

FIG. 14. Velocity distributions normalized by U = u/u, and X = r/L as 
R< 1.74. 

7. SUMMARY 

The radiation-induced cavitation process is studied by 
dynamic theory and numerical analysis. The scaling trans- 
formation is successfully used to overcome the singularity 
difficulty and to establish the initial conditions for later 
calculation. The implicit donor-cell finite difference method 
is introduced to compute the solution for short times to 
improve the computation efficiency. The details of the flow 
fields are solved by the above methods in the initial stage 
and the pre-bubble formation stage. The density gradient in 
the medium stage increases with time evolution. The simple 
non-adaptive finite difference method cannot be expected to 
give satisfactory answers in describing the formation and 
growth of the vapor-liquid interface. The adaptive 
computational methods will be used in part II to solve the 
flow fields for the interface formation and post-interface 
formation stages. General conclusions will be made in 
part II of this paper. 
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